
DYNAMIC ENGINEERING
150 DuBois, Suite C

Santa Cruz, CA 95060
(831) 457-8891

https://www.dyneng.com
sales@dyneng.com

Est. 1988

Parallel-TTL-GPIO

Windows 10 WDF Driver
Documentation

Developed with Windows Driver Foundation
Ver1.19

Revision 01p2 11/10/21
Corresponding Hardware: Revision 02+

PMC 10-2007-0102, XMC 10-2012-0902
FLASH 0101

 Embedded Solutions Page 2

Parallel-TTL-GPIO
WDF Device Drivers for
PMC-Parallel-TTL-GPIO
XMC-Parallel-TTL-GPIO

Dynamic Engineering

150 DuBois, Suite C

Santa Cruz, CA 95060

(831) 457-8891

This document contains information of proprietary interest to
Dynamic Engineering. It has been supplied in confidence and the
recipient, by accepting this material, agrees that the subject
matter will not be copied or reproduced, in whole or in part, nor its
contents revealed in any manner or to any person except to meet
the purpose for which it was delivered.

Dynamic Engineering has made every effort to ensure that this
manual is accurate and complete. Still, the company reserves the
right to make improvements or changes in the product described
in this document at any time and without notice. Furthermore,
Dynamic Engineering assumes no liability arising out of the
application or use of the device described herein.

The electronic equipment described herein generates, uses, and
can radiate radio frequency energy. Operation of this equipment
in a residential area is likely to cause radio interference, in which
case the user, at his own expense, will be required to take
whatever measures may be required to correct the interference.

Dynamic Engineering’s products are not authorized for use as
critical components in life support devices or systems without the
express written approval of the president of Dynamic
Engineering.

This product has been designed to operate with PMC/XMC
carriers and compatible user-provided equipment. Connection of
incompatible hardware is likely to cause serious damage.

©2021 by Dynamic Engineering.

Trademarks and registered trademarks are owned by their respective
manufactures.

 Embedded Solutions Page 3

INTRODUCTION 5

DRIVER INSTALLATION 6

Windows 10 Installation 6

IO Controls 8
IOCTL_PAR_TTL_GPIO_GET_INFO 9
IOCTL_PAR_TTL_GPIO_LOAD_PLL_DATA 9
IOCTL_PAR_TTL_GPIO_READ_PLL_DATA 10
IOCTL_PAR_TTL_GPIO_SET_BASE_CONFIG 10
IOCTL_PAR_TTL_GPIO_GET_BASE_CONFIG 10
IOCTL_PAR_TTL_GPIO_GET_STATUS 11
IOCTL_PAR_TTL_GPIO_SET_FIFO_LEVELS 11
IOCTL_PAR_TTL_GPIO_GET_FIFO_LEVELS 11
IOCTL_PAR_TTL_GPIO_GET_FIFO_COUNTS 12
IOCTL_PAR_TTL_GPIO_RESET_FIFOS 12
IOCTL_PAR_TTL_GPIO_WRITE_FIFO 12
IOCTL_PAR_TTL_GPIO_READ_FIFO 12
IOCTL_PAR_TTL_GPIO_REGISTER_EVENT 13
IOCTL_PAR_TTL_GPIO_ENABLE_INTERRUPTS 13
IOCTL_PAR_TTL_GPIO_DISABLE_INTERRUPTS 13
IOCTL_PAR_TTL_GPIO_FORCE_INTERRUPT 14
IOCTL_PAR_TTL_GPIO_GET_ISR_STATUS 14
IOCTL_PAR_TTL_GPIO_BRIDGE_RECONFIG 14
IOCTL_PAR_TTL_GPIO_GET_INT_COUNT 15
IOCTL_PAR_TTL_GPIO_SET_MASTER_INT_CONFIG 15
IOCTL_PAR_TTL_GPIO_GET_MASTER_INT_CONFIG 15
IOCTL_PAR_TTL_GPIO_SET_DATA_OUT0,1 16
IOCTL_PAR_TTL_GPIO_GET_DATA_OUT0,1 16
IOCTL_PAR_TTL_GPIO_SET_EN0,1 16
IOCTL_PAR_TTL_GPIO_GET_EN0,1 16
IOCTL_PAR_TTL_GPIO_SET_POLARITY0,1 17
IOCTL_PAR_TTL_GPIO_GET_POLARITY0,1 17
IOCTL_PAR_TTL_GPIO_SET_EDGE_LEVEL0,1 17
IOCTL_PAR_TTL_GPIO_GET_EDGE_LEVEL0,1 17
IOCTL_PAR_TTL_GPIO_SET_INT_EN0,1 18
IOCTL_PAR_TTL_GPIO_GET_INT_EN0,1 18
IOCTL_PAR_TTL_GPIO_READ_DIRECT0,1 18
IOCTL_PAR_TTL_GPIO_READ_FILTERED0,1 18
IOCTL_PAR_TTL_GPIO_SET_COS_RISING_STAT0,1 19
IOCTL_PAR_TTL_GPIO_GET_COS_RISING_STAT0,1 19
IOCTL_PAR_TTL_GPIO_SET_COS_FALLING_STAT0,1 19

Table of Contents

 Embedded Solutions Page 4

IOCTL_PAR_TTL_GPIO_GET_COS_FALLING_STAT0,1 19
IOCTL_PAR_TTL_GPIO_SET_COS_RISING_EN0,1 20
IOCTL_PAR_TTL_GPIO_GET_COS_RISING_EN0,1 20
IOCTL_PAR_TTL_GPIO_SET_COS_FALLING_EN0,1 20
IOCTL_PAR_TTL_GPIO_GET_COS_FALLING_EN0,1 20
IOCTL_PAR_TTL_GPIO_SET_HALFDIV 21
IOCTL_PAR_TTL_GPIO_GET_HALFDIV 21
IOCTL_PAR_TTL_GPIO_SET_TMP 21
IOCTL_PAR_TTL_GPIO_GET_TMP 21

Write 22

Read 22

WARRANTY AND REPAIR 23

Service Policy 23
Support 23

For Service Contact: 23

 Embedded Solutions Page 5

Introduction
The ParTtlGpio driver was developed with the Windows Driver Foundation
version 1.19 (WDF) from Microsoft, specifically the Kernel-Mode Driver
Framework (KMDF).

PMC-Parallel-TTL-GPIO and XMC-Parallel-TTL-GPIO are supported with the
same driver interface. “Parallel-TTL-GPIO” features a Spartan6 Xilinx FPGA to
implement the PCI interface, FIFOs, and IO processing, control and status for 64
discrete IO. Each IO is a single ended signal with programmable 3.3V or 5V
reference [one for all IO]. There is a programmable PLL with four clock outputs.
PLLA or the Oscillator can be used as the reference for the COS clock divider.
Many COS frequencies are user selectable in this manner. An unusual feature is
a standalone FIFO [8Kx32] with DMA in and out. The memory doesn’t “do
anything” since it is not currently attached to input or output data. It is available
for user purposes and to support future requirements.

UserAp is a stand-alone code set with a simple and powerful menu plus a series
of tests that can be run on the installed hardware. Each of the tests execute calls
to the driver, pass parameters and structures, and get results back. With the
sequence of calls demonstrated, the functions of the hardware are utilized for
loop-back testing. The software is used for manufacturing test at Dynamic
Engineering. The test software can be ported to your application to provide a
running start. The tests are simple and will quickly demonstrate the end-to-end
operation of your application making calls to the driver and interacting with the
hardware.

The menu allows the user to add tests, to run sequences of tests, to run until a
failure occurs and stop or to continue, to program a set number of loops to
execute and more. The user can add tests to the provided test suite to try out
application ideas before committing to your system configuration. In many cases
the test configuration will allow faster debugging in a more controlled
environment before integrating with the rest of the system. The test menu uses
the Type field to know which board type it is communicating with and prints that
out at the top of the menu. The .inf file also has the definitions and the system
will show the type in the device manager after installation of the driver.

UserAp is delivered with multiple example tests plus 2 utilities that may prove
useful in your debugging / integration. At the end of the UserAp menu is an item
“Print Registers”. When executed – select the appropriate “test” number in the
menu – the current contents of the registers are displayed. The structures for the
Base and Base 1 registers are shown with the structure selection and current

 Embedded Solutions Page 6

status. The remainder are shown as hex numbers. Easy way to check if GPIO
is set-up the way you think it is.

The second utility is “Modify Registers”. This utility allows the user to select a
register to change, shows the current contents and allows the user to change the
contents. The utility will allow multiple changes to the same register, switching
to a new register. For example, one can enable the master data Sync bit,
enable selected outputs, and set and change the IO definition. 64 bit registers
have an extra selection to toggle to the lower half and then park there until a new
selection is made.

When Parallel-TTL-GPIO is recognized by the PCI bus configuration utility it will
start the ParTtlGpio driver to allow communication with the device. IO Control
calls (IOCTLs) are used to configure the board and read status. Read and Write
calls are used to move blocks of data in and out of the device.

Note
This documentation will provide information about all calls made to the drivers,
and how the drivers interact with the device for each of these calls. For more
detailed information on the hardware implementation, refer to the PMC-
Parallel-TTL-GPIO or XMC-Parallel-TTL-GPIO user manual as appropriate (also
referred to as the hardware manual).

Driver Installation
There are several files provided in each driver package. These files include
ParTtlGpioPublic.h, ParTtlGpio.inf, ParTtlGpio.cat, and ParTtlGpio.sys.

ParTtlGpioPublic.h is the C header file that defines the Application Program
Interface (API) for the ParTtlGpio driver. This file is required at compile time by
any application that wishes to interface with the drivers, but is not needed for
driver installation. This file is included with the UserAp file set.

Windows 10 Installation
Copy ParTtlGpio.inf, ParTtlGpio.cat, and ParTtlGpio.sys (Win10 version) to a CD,
USB memory device, or local directory as preferred.

With the Parallel-TTL-GPIO hardware installed, power-on the host computer.
• Open the Device Manager from the control panel.
• Under Other devices there should be an Other PCI Bridge Device*.
• Right-click on the Other PCI Bridge Device and select Update Driver

 Embedded Solutions Page 7

Software.

• Select Browse my computer for driver software.
• Select Navigate to the folder or device. If at the root select the sub folders
button.
• Select Next.
• Select Close to close the update window.
The system should now display the ParTtlGpio adapter in the Device Manager.
The type will also be shown – PMC or XMC

* If the Other PCI Bridge Device is not displayed, click on the Scan for
hardware changes icon on the tool-bar.

 Embedded Solutions Page 8

Driver Startup
Once the driver has been installed it will start automatically when the system
recognizes the hardware.

A handle can be opened to a specific board by using the CreateFile() function
call and passing in the device name obtained from the system.

The interface to the device is identified using globally unique identifiers (GUID),
which are defined in ParTtlGpioPublic.h. See main.c in the
ParallelTtlGpioUserAp project for an example of how to acquire a handle to the
device.

The main file provided is designed to work with our test menu and includes user
interaction steps to allow the user to select which board is being tested in a
multiple board environment. The integrator can hardcode for single board
systems or use an automatic loop to operate in multiple board systems without
using user interaction. For multiple user systems it is suggested that the board
number is associated with a switch setting so the calls can be associated with a
particular board from a physical point of view.

IO Controls
The drivers use IO Control calls (IOCTLs) to configure the device. IOCTLs refer
to a single Device Object, which controls a single board or I/O channel. IOCTLs
are called using the Win function DeviceIoControl(), and passing in the handle to
the device opened with CreateFile() (see above). IOCTLs generally have input
parameters, output parameters, or both. Often a custom structure is used.

BOOL DeviceIoControl(
 HANDLE hDevice, // Handle opened with CreateFile()
 DWORD dwIoControlCode, // Control code defined in API header
file
 LPVOID lpInBuffer, // Pointer to input parameter
 DWORD nInBufferSize, // Size of input parameter
 LPVOID lpOutBuffer, // Pointer to output parameter
 DWORD nOutBufferSize, // Size of output parameter
 LPDWORD lpBytesReturned, // Pointer to return length parameter
 LPOVERLAPPED lpOverlapped, // Optional pointer to overlapped
structure
); // used for asynchronous I/O

 Embedded Solutions Page 9

The IOCTLs defined for the Parallel-TTL-GPIO driver are described below:
66 currently defined. Two part IOCTLs are grouped – Upper and Lower access to 64 bit registers
etc.

IOCTL_PAR_TTL_GPIO_GET_INFO
Function: Returns the device driver version, Xilinx flash revision, PLL device ID, user
switch value, Type, and device instance number.
Input: None
Output: PAR_TTL_GPIO_DRIVER_DEVICE_INFO structure
Notes: The switch value is the configuration of the 8-bit onboard dipswitch that
has been selected by the user (see the board silk screen for bit position and
polarity). Instance number is the zero-based device number. Revision Major
and Revision Minor represent the current Flash revision Major.Minor. Type is set
to 1 or 2 to show if PMC or XMC respectively. PLL Device ID is the I2C address
discovered.

// Driver/Device information
typedef struct _PAR_TTL_GPIO_DRIVER_DEVICE_INFO {
 ULONG InstanceNumber;
 UCHAR DriverVersion;
 UCHAR RevisionMajor;
 UCHAR RevisionMinor;
 UCHAR SwitchValue;
 UCHAR TypeValue;
 UCHAR PllDeviceId;
 BOOLEAN BridgeConfigured;
} PAR_TTL_GPIO_DRIVER_DEVICE_INFO, *PPAR_TTL_GPIO_DRIVER_DEVICE_INFO;

IOCTL_PAR_TTL_GPIO_LOAD_PLL_DATA
Function: Writes to the internal registers of the PLL.
Input: PAR_TTL_GPIO_PLL_DATA structure
Output: None
Notes: The PAR_TTL_GPIO_PLL_DATA structure has only one field: Data – an
array of 40 bytes containing the PLL register data to write. See below for the
definition of PAR_TTL_GPIO_PLL_DATA.

 // Structures for IOCTLs
#define PLL_MESSAGE1_SIZE 16
#define PLL_MESSAGE2_SIZE 24
#define PLL_MESSAGE_SIZE (PLL_MESSAGE1_SIZE + PLL_MESSAGE2_SIZE)

typedef struct _PAR_TTL_GPIO_PLL_DATA {
 UCHAR Data[PLL_MESSAGE_SIZE];
} PAR_TTL_GPIO_PLL_DATA, *PPAR_TTL_GPIO_PLL_DATA;

 Embedded Solutions Page 10

IOCTL_PAR_TTL_GPIO_READ_PLL_DATA
Function: Reads and returns the contents of the internal registers of the PLL.
Input: None
Output: PAR_TTL_GPIO_PLL_DATA structure
Notes: The PLL register data is returned in the PAR_TTL_GPIO_PLL_DATA
structure in an array of 40 bytes. See definition of PAR_TTL_GPIO_PLL_DATA
above.

IOCTL_PAR_TTL_GPIO_SET_BASE_CONFIG
Function: Writes the base configuration register on the Parallel-TTL-GPIO.
Input: PAR_TTL_GPIO_SET_CONFIG structure
Output: None
Notes: The Base Configuration register data is set with the
PAR_TTL_GPIO_SET_CONFIG structure.

typedef struct _PAR_TTL_GPIO_BASE_SET_CONFIG {
 BOOLEAN SyncIo; // set to enable output, use to synchronize upper and lower
 BOOLEAN IoRst; // set to cause reset, return to cleared required to operate
 BOOLEAN ForceIntEn; // set to force interrupt, clear to remove
 BOOLEAN CosClkSel; // set to use PLL, cleared uses oscillator reference
 BOOLEAN VioSel; // not set = 3.3, set = 5V IO reference
} PAR_TTL_GPIO_BASE_SET_CONFIG, *PPAR_TTL_GPIO_BASE_SET_CONFIG;

IOCTL_PAR_TTL_GPIO_GET_BASE_CONFIG
Function: Returns the configuration of the base control register.
Input: None
Output: PAR_TTL_GPIO_GET_CONFIG structure
Notes: The Base Configuration register data is returned in the
PAR_TTL_GPIO_GET_CONFIG structure.

typedef struct _PAR_TTL_GPIO_BASE_GET_CONFIG {
 BOOLEAN SyncIo; // set to enable output, use to synchronize upper and lower
 BOOLEAN IoRst; // set to cause reset, return to cleared required to operate
 BOOLEAN ForceIntEn; // set to force interrupt, clear to remove
 BOOLEAN CosClkSel; // set to use PLL, cleared uses oscillator reference
 BOOLEAN VioSel; // not set = 3.3, set = 5V IO reference
} PAR_TTL_GPIO_BASE_GET_CONFIG, *PPAR_TTL_GPIO_BASE_GET_CONFIG;

 Embedded Solutions Page 11

IOCTL_PAR_TTL_GPIO_GET_STATUS
Function: Returns the status register value
Input: None
Output: Value of status register (unsigned long integer)
Notes: Returns FIFO, IO and interrupt status. See HW manual for detail about
the meaning of the bits. Please note: Public.h contains some additional bits
reserved for when FIFO based IO is implemented. Those bits are set to ‘0’
currently.

IOCTL_PAR_TTL_GPIO_SET_FIFO_LEVELS
Function: Sets the transmitter almost empty and receiver almost full FIFO levels.
Input: PAR_TTL_GPIO_FIFO_LEVELS structure
Output: None
Notes: The FIFO levels are used to determine at what data count the TX almost
empty and RX almost full status bits are asserted. The counts are compared to
the word counts of the transmit FIFO or receive FIFO. The FIFOs are not
currently in use and have been replaced with a single FIFO for DMA
demonstration. See the definition of PAR_TTL_GPIO_FIFO_LEVELS below.

typedef struct _PAR_TTL_GPIO_FIFO_LEVELS {
 USHORT TxAlmostEmpty;
 USHORT RxAlmostFull;
} PAR_TTL_GPIO_FIFO_LEVELS, *PPAR_TTL_GPIO_FIFO_LEVELS;

IOCTL_PAR_TTL_GPIO_GET_FIFO_LEVELS
Function: Returns the transmitter almost empty and receiver almost full levels.
Input: None
Output: PAR_TTL_GPIO_FIFO_LEVELS structure
Notes: Returns the current values for the transmit almost empty and receive
almost full FIFO levels. See the definition of PAR_TTL_GPIO_FIFO_LEVELS
above.

 Embedded Solutions Page 12

IOCTL_PAR_TTL_GPIO_GET_FIFO_COUNTS
Function: Returns the number of data words in the transmit and receive FIFOs.
Input: None
Output: PAR_TTL_GPIO_FIFO_COUNTS structure
Notes: Currently 8Kx32 FIFO plus a four-deep pipeline at the output of the
receive FIFO chain that is required for DMA processing. The
PAR_TTL_GPIO_FIFO_COUNTS structure contains four fields. TxFF0Count
and RxFF0count are the word-counts of the internal FIFOs used to determine the
almost empty and almost full status; TxTotalCount and RxTotalCount are the
combined counts of the entire data paths. Currently only the RxTotalCount is
valid. Others are set to “0”.

typedef struct _PAR_TTL_GPIO_FIFO_COUNTS {
 USHORT TxFF0Count;
 ULONG TxTotalCount;
 USHORT RxFF0Count;
 ULONG RxTotalCount;
} PAR_TTL_GPIO_FIFO_COUNTS, *PPAR_TTL_GPIO_FIFO_COUNTS;

IOCTL_PAR_TTL_GPIO_RESET_FIFOS
Function: Resets all transmit and receive FIFOs.
Input: None
Output: None
Notes: Automatically toggles the IoRst bit in the base register to reset the
statemachines, FIFO pointers etc.

IOCTL_PAR_TTL_GPIO_WRITE_FIFO
Function: Writes a single 32-bit data-word to the TX FIFO.
Input: FIFO word (unsigned long integer)
Output: None
Notes: This call and the following call are used to make single-word accesses to
the FIFOs.

IOCTL_PAR_TTL_GPIO_READ_FIFO
Function: Reads and returns a single 32-bit data word from the RX FIFO.
Input: None
Output: FIFO word (unsigned long integer)
Notes: Tx and Rx FIFO are currently the same FIFO.

 Embedded Solutions Page 13

IOCTL_PAR_TTL_GPIO_REGISTER_EVENT
Function: Registers an event to be signaled when an interrupt occurs.
Input: Handle to the Event object
Output: None
Notes: The user creates an event with CreateEvent() and supplies the handle
returned from that call as the input to this IOCTL. The driver then obtains a
system pointer to the event and signals the event when a user interrupt is
serviced by the driver. The user-defined interrupt service routine waits on this
event, allowing it to respond to the interrupt. The DMA interrupts do not cause
the event to be signaled unless they are explicitly enabled in the enable
interrupts call.

IOCTL_PAR_TTL_GPIO_ENABLE_INTERRUPTS
Function: Enables the DMA and/or master interrupts.
Input: PAR_TTL_GPIO_INT_SELECT structure
Output: None
Notes: PAR_TTL_GPIO_INT_SELECT structure has three BOOLEAN members.
When WrDmaDoneInt is true, an event that has been registered with the
previous call, will be signaled when a write DMA completes. Similarly, when
RdDmaDoneInt is true, the event will be signaled upon the completion of a read
DMA. This behavior will persist until explicitly disabled with the
IOCTL_PAR_TTL_GPIO_DISABLE_INTERRUPTS call. MasterInt enables all
the other interrupts (TX, RX, FIFO levels etc.). The master interrupt is cleared in
the interrupt service routine and must be re-enabled using this call after an
interrupt (other than a DMA interrupt) has been serviced. See the definition of
PAR_TTL_GPIO_INT_SELECT below. See also IO Interrupt Enables.

typedef struct _PAR_TTL_GPIO_INT_SELECT {
 BOOLEAN MasterInt;
 BOOLEAN WrDmaDoneInt;
 BOOLEAN RdDmaDoneInt;
} PAR_TTL_GPIO_INT_SELECT, *PPAR_TTL_GPIO_INT_SELECT;

IOCTL_PAR_TTL_GPIO_DISABLE_INTERRUPTS
Function: Disables the DMA and/or master interrupt.
Input: PAR_TTL_GPIO_INT_SELECT structure
Output: None
Notes: This call is used when DMA or user interrupt processing is no longer
desired. See the definition of PAR_TTL_GPIO_INT_SELECT above.

 Embedded Solutions Page 14

IOCTL_PAR_TTL_GPIO_FORCE_INTERRUPT
Function: Causes a system interrupt to occur.
Input: None
Output: None
Notes: Causes an interrupt to be asserted as long as the master interrupt is
enabled. This IOCTL is used for development, to test interrupt processing.

IOCTL_PAR_TTL_GPIO_GET_ISR_STATUS
Function: Returns the interrupt status read in the ISR from the last user
interrupt.
Input: None
Output: PAR_TTL_GPIO_ISR_STAT structure
Notes: Returns the interrupt status that was read in the interrupt service routine
of the last interrupt caused by one of the enabled interrupt conditions. Multiple
ULONG members with complete status for the Interrupt Status register, Rising,
Falling, and Filtered data.

typedef struct _PAR_TTL_GPIO_ISR_STAT {
 ULONG InterruptStatus;
 ULONG RisingData0;
 ULONG RisingData1;
 ULONG FallingData0;
 ULONG FallingData1;
 ULONG FilteredData0;
 ULONG FilteredData1;
} PAR_TTL_GPIO_ISR_STAT, * PPAR_TTL_GPIO_ISR_STAT;

IOCTL_PAR_TTL_GPIO_BRIDGE_RECONFIG
Function: Look for upstream TSI284 bridge and reprogram
Input: None
Output: None
Notes: Creates a work item that looks for an upstream bridge. For example if
the XMC is used the bridge is on the XMC. If the PMC is used with
PCIeBPMCX1 the bridge is on the carrier. Certain settings are modified to
enhance DMA performance. To see if configuration was successful
[BridgeConfigured] check that status. Since the work item operates in parallel
allow for this call to complete. Example in the menu.

 Embedded Solutions Page 15

IOCTL_PAR_TTL_GPIO_GET_INT_COUNT
Function: Read current count of interrupts from this device
Input: None
Output: INT_COUNT Structure
Notes:
typedef struct _INT_COUNT {
 ULONG int_count;
 ULONG force_int_count;
} INT_COUNT, *PINT_COUNT;

IOCTL_PAR_TTL_GPIO_SET_MASTER_INT_CONFIG
Function: Enable or Disable Master Interrupt Enable
Input: PAR_TTL_GPIO_MASTER_INT_CONFIG
Output: None
Notes:

IOCTL_PAR_TTL_GPIO_GET_MASTER_INT_CONFIG
Function: Reads and returns state of Master Interrupt Enable
Input: None
Output: PAR_TTL_GPIO_MASTER_INT_CONFIG
Notes:

typedef struct _PAR_TTL_GPIO_MASTER_INT_CONFIG {
 BOOLEAN MasterIntEn;
} PAR_TTL_GPIO_MASTER_INT_CONFIG, * PPAR_TTL_GPIO_MASTER_INT_CONFIG;

 Embedded Solutions Page 16

///
//For 64 bit GPIO Registers, suffix 0 = bits 31-0, suffix 1 = bits 63-32
//Upper and Lower are described together 0,1 means use 0 for lower, 1 for upper.
IOCTL_PAR_TTL_GPIO_SET_DATA_OUT0,1
Function: Writes a single 32-bit data-word to the Data Register
Input: ULONG
Output: None
Notes: If the IO is enabled to be updated the data will flow to the output based
on the Enable Registers.

IOCTL_PAR_TTL_GPIO_GET_DATA_OUT0,1
Function: Reads and returns a single 32-bit data word from the Data Register.
Input: None
Output: ULONG
Notes: This is the register read-back and will match the SET data.

IOCTL_PAR_TTL_GPIO_SET_EN0,1
Function: Writes a single 32-bit data-word to the Data Enable Register
Input: ULONG
Output: None
Notes: For each bit set to ‘1’ the driver will be enabled. The corresponding bit in
the DATA_OUT registers will be driven to the external IO. Bits not set are not
driven. The Synchronization bit will also need to be set to propagate to the IO.

IOCTL_PAR_TTL_GPIO_GET_EN0,1
Function: Reads and returns a single 32-bit data word from the Data Enable Register.
Input: None
Output: ULONG
Notes:

 Embedded Solutions Page 17

IOCTL_PAR_TTL_GPIO_SET_POLARITY0,1
Function: Writes a single 32-bit data-word to the Polarity Register
Input: ULONG
Output: None
Notes: For each bit set to ‘1’ the bit will be inverted. Only affects input side data,
not the driven data. See the FilteredData registers.

IOCTL_PAR_TTL_GPIO_GET_POLARITY0,1
Function: Reads and returns a single 32-bit data word from the Polarity Register.
Input: None
Output: ULONG
Notes:

IOCTL_PAR_TTL_GPIO_SET_EDGE_LEVEL0,1
Function: Writes a single 32-bit data-word to the EdgeLevel Register
Input: ULONG
Output: None
Notes: For each bit set to ‘1’ the bit will be treated as edge sensitive. Only
affects input side data, not the driven data. For each bit cleared, the data is
treated as level sensitive.

IOCTL_PAR_TTL_GPIO_GET_EDGE_LEVEL0,1
Function: Reads and returns a single 32-bit data word from the EdgeLevel Register.
Input: None
Output: ULONG
Notes:

 Embedded Solutions Page 18

IOCTL_PAR_TTL_GPIO_SET_INT_EN0,1
Function: Writes a single 32-bit data-word to the Interrupt Enable Register
Input: ULONG
Output: None
Notes: For each bit set to ‘1’ the bit the associated interrupt will be enabled.
Only affects input side data. Used for both Level and Edge defined processing.
See Rising and Falling for additional options.

IOCTL_PAR_TTL_GPIO_GET_INT_EN0,1
Function: Reads and returns a single 32-bit data word from the Interrupt Enable
Register.
Input: None
Output: ULONG
Notes:

IOCTL_PAR_TTL_GPIO_READ_DIRECT0,1
Function: Reads and returns a single 32-bit data word from the IO port.
Input: None
Output: ULONG
Notes: Direct data is synchronized but not filtered in any way. Get the state of
the IO (whether defined as output or input).

IOCTL_PAR_TTL_GPIO_READ_FILTERED0,1
Function: Reads and returns a single 32-bit data word from the IO port after
manipulation.
Input: None
Output: ULONG
Notes: Data is synchronized and filtered. Polarity and EdgeLevel are applied.

 Embedded Solutions Page 19

IOCTL_PAR_TTL_GPIO_SET_COS_RISING_STAT0,1
Function: Writes a single 32-bit data-word to the Rising Status Register
Input: ULONG
Output: None
Notes: For each bit set to ‘1’ the corresponding bit in the Rising Status Register
is cleared.

IOCTL_PAR_TTL_GPIO_GET_COS_RISING_STAT0,1
Function: Reads and returns a single 32-bit data word from the Rising Status Register.
Input: None
Output: ULONG
Notes: When an IO bit programmed as Edge and Rising transitions from low to
high the status bit is set. If the corresponding Interrupt Enable is also set an
interrupt is generated. Clear by writing back with the bit(s) set.

IOCTL_PAR_TTL_GPIO_SET_COS_FALLING_STAT0,1
Function: Writes a single 32-bit data-word to the Falling Status Register
Input: ULONG
Output: None
Notes: For each bit set to ‘1’ the corresponding bit in the Falling Status Register
is cleared.

IOCTL_PAR_TTL_GPIO_GET_COS_FALLING_STAT0,1
Function: Reads and returns a single 32-bit data word from the Falling Status Register.
Input: None
Output: ULONG
Notes: When an IO bit programmed as Edge and Falling transitions from HIgh to
Low the status bit is set. If the corresponding Interrupt Enable is also set an
interrupt is generated. Clear by writing back with the bit(s) set.

 Embedded Solutions Page 20

IOCTL_PAR_TTL_GPIO_SET_COS_RISING_EN0,1
Function: Writes a single 32-bit data-word to the Rising Enable Register
Input: ULONG
Output: None
Notes: For each bit set to ‘1’ the corresponding IO bit is enabled to be captured
for rising edge transitions.

IOCTL_PAR_TTL_GPIO_GET_COS_RISING_EN0,1
Function: Reads and returns a single 32-bit data word from the Rising Enable Register.
Input: None
Output: ULONG
Notes: Register read, will match current register value.

IOCTL_PAR_TTL_GPIO_SET_COS_FALLING_EN0,1
Function: Writes a single 32-bit data-word to the Falling Enable Register
Input: ULONG
Output: None
Notes: For each bit set to ‘1’ the corresponding IO bit is enabled to be captured
for falling edge transitions.

IOCTL_PAR_TTL_GPIO_GET_COS_FALLING_EN0,1
Function: Reads and returns a single 32-bit data word from the Falling Enable
Register.
Input: None
Output: ULONG
Notes: Register read, will match current register value.

 Embedded Solutions Page 21

IOCTL_PAR_TTL_GPIO_SET_HALFDIV
Function: Writes a single 32-bit data-word to the Rising Enable Register
Input: ULONG
Output: None
Notes: Write to this register to define divider to apply to COS reference clock
selected. COS clock is Reference / 2N where N= 16 bits. Set upper bits to 0.

IOCTL_PAR_TTL_GPIO_GET_HALFDIV
Function: Reads and returns a single 32-bit data word from the HalfDiv Register.
Input: None
Output: ULONG
Notes: Register read, will match current register value.

IOCTL_PAR_TTL_GPIO_SET_TMP
Function: Writes a single 32-bit data-word to the Rising Enable Register
Input: None
Output: None
Notes: Write to this register to initiate read of temperature data

IOCTL_PAR_TTL_GPIO_GET_TMP
Function: Read from TMP123 port
Input: None
Output: ULONG
Notes: Data is in 2’s complement format. 13 is Ready bit, 12 is sign. 11-0 are
data. After starting data capture with write, read from this port until Ready is set.
Then convert data. More information in HW manual and Temp.c example code.

 Embedded Solutions Page 22

Write
Parallel-TTL-GPIO DMA data is written to the device using the write command.
Writes are executed using the Win32 function DE_WriteFile() and passing in the
handle to the device opened with CreateFile(), a pointer to a pre-allocated buffer
containing the data to be written, an unsigned long integer that represents the
size of that buffer in bytes, a pointer to an unsigned long integer to contain the
number of bytes actually written, and an optional pointer to an Overlapped
structure for performing asynchronous I/O.

It should be noted that asynchronous IO has not been tested. The size of buffer
in bytes should fall on a long word boundary. The total number of writes should
not exceed the number that fit in the FIFO. Writing more than will fit into the
FIFO will result in data being dropped [overflow]. Fit means locations remaining
in the FIFO at the time of the write command.

Read
Parallel-TTL-GPIO DMA data is read from the device using the read command.
Reads are executed using the Win32 function DE_ReadFile() and passing in the
handle to the device opened with CreateFile(), a pointer to a pre-allocated buffer
that will contain the data read, an unsigned long integer that represents the size
of that buffer in bytes, a pointer to an unsigned long integer to contain the
number of bytes actually read, and an optional pointer to an Overlapped structure
for performing asynchronous I/O.

It should be noted that asynchronous IO has not been tested. The size of buffer
in bytes should fall on a long word boundary. The total number of reads should
not exceed the number of data in the FIFO. Reading more than stored will result
in duplicated data [underflow].

Please note: Windows 10 has some bugs. With the 20H2 revision many of the
issues affecting proper DMA operation have been resolved. It is expected this
revision or later Win10 is in use. In addition, the size of the transfer has to be
restricted with Windows applications.

 Embedded Solutions Page 23

Warranty and Repair
Please refer to the warranty page on our website for the current warranty offered
and options.
http://www.dyneng.com/warranty.html

Service Policy
Before returning a product for repair, verify as well as possible that the driver is at
fault. The driver has gone through extensive testing, and in most cases it will be
“cockpit error” rather than an error with the driver. When you are sure or at least
willing to pay to have someone help then call or e-mail and arrange to work with
an engineer. We will work with you to determine the cause of the issue.
Support
The software described in this manual is provided at no cost to clients who have
purchased the corresponding hardware. Minimal support is included along with
the documentation. For help with integration into your project please contact
sales@dyneng.com for a support contract. Several options are available. With a
contract in place Dynamic Engineers can help with system debugging, special
software development, or whatever you need to get going.

For Service Contact:
Customer Service Department
Dynamic Engineering
150 DuBois Street, Suite C
Santa Cruz, CA 95060
831-457-8891
support@dyneng.com

All information provided is Copyright Dynamic Engineering

